> 自媒体 > (AI)人工智能 > 深度解读:DeepSeek 又进化了!V3.2 推理能力世界第一
深度解读:DeepSeek 又进化了!V3.2 推理能力世界第一
来源:01Agent
2025-12-02 10:04:28
165
管理

朋友们,DeepSeek又整活了。

就在大家还在感叹闭源模型(像Gemini 3.0 Pro、GPT-5)和开源模型的差距似乎在重新拉大时,DeepSeek-V3.2直接把这份技术报告甩在了桌上。

我看完了整份报告,心情很复杂。因为这次V3.2不仅仅是性能的提升,更重要的是它解决了一个核心痛点:如何在开源算力有限的情况下,把“推理能力”完美地嫁接到“Agent(智能体)”场景里,同时还不用因为长文本把显存撑爆。

简单说,DeepSeek-V3.2干了三件大事。

第一,它是怎么变“快”的?——DSA稀疏注意力机制

大家知道,随着Context(上下文)越来越长,以前的Transformer架构(Vanilla Attention)效率是越来越低的。你想想,处理128K的长文本,计算量是指数级爆炸的。

DeepSeek这次掏出了一个新武器:DeepSeek Sparse Attention (DSA)。

这个东西非常巧妙。它包含了一个“闪电索引器(Lightning Indexer)”和一个“细粒度Token选择器”。用大白话解释就是:以前模型看书是每一个字都要盯着看,现在DSA学会了“速读”——它能快速判断哪些部分是重要的,只对那些最关键的信息进行精细处理,而忽略那些无关紧要的背景噪音。

结果怎么样?报告里写得很清楚,在保持长文本性能(128K context)不掉点的情况下,计算复杂度大幅降低。这就意味着,我们以后在本地跑超长上下文任务时,推理成本和速度都会有巨大的优势。图表显示,它的推理成本曲线比上一代平缓太多了,简直是长文本玩家的福音。

第二,它是怎么变“强”的?——疯狂堆RL(强化学习)

很多人以为预训练(Pre-training)结束模型就定型了。但DeepSeek这次告诉我们:好戏还在后头。

V3.2的一个核心策略是Scalable Reinforcement Learning (RL)。他们把后训练阶段(Post-training)的算力预算直接拉到了预训练成本的10%以上!这不是小数目。

通过这种大规模的RL训练,V3.2在逻辑推理能力上直接起飞。特别是他们搞出来的那个“怪物”版本——DeepSeek-V3.2-Speciale。

这个Speciale版本有多夸张?

• IMO 2025(国际数学奥林匹克)金牌水平。• IOI 2025(国际信息学奥林匹克)金牌水平。• ICPC World Final 2025 金牌水平。

在报告的图表里,Speciale版本的柱状图在数学和代码竞赛上是压着GPT-5 High和Gemini-3.0 Pro打的。虽然后者在通用知识广度上可能还有优势(毕竟人家训练数据多),但在这种硬核推理任务上,DeepSeek已经证明了开源模型完全可以达到SOTA(State of the Art)级别。

第三,它是怎么变“灵”的?——让思考融入工具使用

这可能是我觉得V3.2最有价值的改进。

之前的DeepSeek-R1虽然推理很强,但在用工具(比如写代码、搜网页)时,往往会“脑子转不过弯”。要么是想完了再干,要么是干了就不想。

V3.2引入了一个Large-Scale Agentic Task Synthesis Pipeline(大规模Agent任务合成流水线)。

这套逻辑太性感了:

1. 他们先用DeepSeek-V3搞了一个“冷启动”,把推理和工具使用结合起来。2. 然后,他们自己造数据!生成了超过1800个虚拟环境和85,000个复杂的Prompt。3. 让模型在这些虚拟环境里不断试错、不断RL。

更有意思的是它的“思考上下文管理”。以前的模型,用一次工具,之前的思考过程可能就丢了,或者导致上下文爆炸。V3.2设计了一套机制:只有当新的用户消息进来时,才丢弃旧的思考过程,但保留工具调用的结果。

这意味着模型可以在多次调用工具的过程中,一直保持“在线思考”的状态,而不会因为多轮对话把Token限额瞬间吃光。

在Agent相关的榜单(比如SWE-bench Verified, Terminal Bench)上,DeepSeek-V3.2的表现大幅超越了之前的开源模型,甚至逼近了闭源的Gemini-3.0-Pro。这对于想用开源模型做全自动写代码Agent的开发者来说,绝对是个重磅利好。

总结与思考

看完这份报告,我有一个很深的感触:DeepSeek正在走出一条属于开源模型的独特道路。

以前我们总觉得开源就是“抄”闭源的作业。但DeepSeek-V3.2展示了:

• 架构创新(DSA解决效率问题);• 数据工程(合成数据解决Agent训练数据短缺问题);• 训练策略(加大后训练RL比重解决推理上限问题)。

虽然DeepSeek团队在报告最后也诚实地承认,在“世界知识的广度”上,受限于预训练算力,他们离Gemini-3.0-Pro这种巨头还有差距。但在智能密度(Intelligence Density)和推理深度上,他们已经把旗帜插在了山顶。

对于我们普通用户和开发者来说,DeepSeek-V3.2意味着你可以用更低的成本(甚至在本地),跑一个拥有金牌数学能力、且极其擅长使用工具的超级模型。

开源不倒,创新不止。期待V3.2权重的正式放出,到时候我们第一时间实测!

大家怎么看这次V3.2的升级?欢迎在评论区聊聊。

欢迎免费获取AI 超级个体知识库:「链接」

0
点赞
赏礼
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 凡本网注明 “来源:XXX(非本站)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。 如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。 QQ:617470285 邮箱:617470285@qq.com
相关文章
三菱退出中国?官方回应:将与现有伙伴继续合作
6月23日,有媒体报道称,三菱汽车将逐步取消包括欧洲、中国在内的市场业..
2026款三菱帕杰罗曝光,第二代超选四驱+2.4T/2.0T双动力..
硬派越野圈的“老将”居然换小排量了?2026款三菱帕杰罗刚露出消息,就把..
恩智浦计划退出5G功率放大器业务;三星或将退出SATA SSD市场;三菱化学出售..
五分钟了解产业大事每日头条芯闻 恩智浦计划退出5G功率放大器业务我国首..
实拍三菱全新欧蓝德!搭1.5T四缸,内饰配大屏,不比奇骏香?..
在重庆车展上,全新一代三菱欧蓝德终于在国内亮相了,相比其国外的发布时..
试驾广汽三菱奕歌:小巧灵动
■ 阅车试驾车型:广汽三菱奕歌长/宽/高(mm):4405/1805/1685轴距(mm..
新车 | 四驱越野MPV/配侧滑门/2.2T柴油机,新款三菱Delica D:5亮相..
文:懂车帝原创 高帅鹏[懂车帝原创 产品] 日前,2025东京车展开幕,新款..
三菱集团的传奇发家史
“三菱”两个字,在日本就像一把瑞士军刀:银行、飞机、汽车、火箭、寿司..
2026款三菱Montero曝光,S-AWC四驱+差速锁全配,普拉多见了..
当 “普拉多见了都得慌” 的话题在越野圈炸锅,2026 款三菱 Montero 的曝..
日韩巨擘数据,三星2.1万亿三菱21万亿,中国第一谁?..
图片来源于网络2025年,让人火大的资本较量又来一波。韩国三星手里握着2...
关于作者
有点醉(普通会员)
文章
1648
关注
0
粉丝
0
点击领取今天的签到奖励!
签到排行

成员 网址收录40418 企业收录2986 印章生成263572 电子证书1157 电子名片68 自媒体91237

@2022 All Rights Reserved 浙ICP备19035174号-7
0
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索