> 自媒体 > (AI)人工智能 > HLE首次突破60分!Eigen-1基于DeepSeek V3.1领先GPT-5
HLE首次突破60分!Eigen-1基于DeepSeek V3.1领先GPT-5
来源:量子位
2025-10-03 10:03:40
81
管理

在HLE(“人类最后考试”)的专家校验子集上,首次有系统突破60分大关!

就在最近,由耶鲁大学唐相儒、王昱婕,上海交通大学徐望瀚,UCLA万冠呈,牛津大学尹榛菲,Eigen AI金帝、王瀚锐等团队联合开发的Eigen-1多智能体系统实现了历史性突破——

在HLE Bio/Chem Gold测试集上,Pass@1准确率达到48.3%,Pass@5准确率更是飙升至61.74%,首次跨越60分大关。这一成绩远超谷歌Gemini 2.5 Pro(26.9%)、OpenAI GPT-5(22.82%)和Grok 4(30.2%)。

最令人振奋的是,这一成就并非依赖闭源超大模型,而是完全基于开源的DeepSeek V3.1搭建。

在这个开源底座上,研究团队通过叠加Monitor-based RAG(隐式知识增强)、HSR(分层解法修复)、QAIR(质量感知迭代推理)三大创新机制,实现了质的飞跃。

下面详细展开——

技术创新:三大支柱撑起60分突破

当AI开始挑战人类知识的终极边界,一场前所未有的较量正在上演。

当大模型在MMLU、GPQA等传统基准上纷纷“卷到90分”时,这些测试逐渐失去了区分力。为了追踪AI在科学推理前沿的真实进展,Center for AI Safety与Scale AI联合推出了“人类最后的考试”(Humanity’s Last Exam,HLE)——

涵盖数学、自然科学、工程学、人文社科等百余领域共3000道博士级难题,被视为AI知识推理的终极试炼。

而HLE Bio/Chem Gold则是HLE的黄金标准子集,包含149道经过领域专家人工审核和纠正的题目。

相比原始HLE数据集,这个子集排除了可能存在歧义或错误答案的问题,确保了标签的准确性和可靠性,因此成为评估AI科学推理能力最可信的基准。

正是在HLE Bio/Chem Gold子集上,Eigen-1系统首次跨越60分大关,而这背后离不开其三大创新机制。

1. Monitor-based RAG:告别“工具税”的隐式检索增强

传统的检索增强生成(RAG)系统就像一个频繁暂停的视频播放器——每次需要外部知识时,都必须中断推理流程、构建查询、处理结果,再重新整合上下文。

研究团队将这种开销形象地称为“工具税”(Tool Tax)——每次工具调用都会打断思考流程,导致上下文丢失。

传统RAG系统的“工具税”问题在下图的人口遗传学案例中展现得淋漓尽致。左侧显示模型过度自信地使用错误公式,右侧则展示了即使通过显式RAG获得正确公式,推理流程的中断导致模型无法将知识重新整合到原始问题中。

Eigen-1的Monitor-based RAG彻底改变了这一范式:

隐式监控:Monitor持续监测推理流中的不确定性,像一位细心的助手,在后台默默关注着每一个可能需要帮助的时刻。扫描推理轨迹以便在不确定时触发RAG。精准查询:Querier在检测到不确定性时,精准提取最小关键词集合,避免搜索空间的不必要扩展。无缝注入:Injector则将检索到的知识无缝融入推理流,就像在对话中自然地补充背景信息,而不是生硬地插入引用。

实验数据显示,与显式RAG相比,Monitor-based RAG将token消耗减少53.5%,将工作流迭代次数减少43.7%,同时保持了更高的准确率。

见下图单倍型计数案例,Monitor检测到重组约束的不确定性,Querier生成针对性查询,Injector注入两个关键事实,使模型能够排除无效案例并得出正确的30个单倍型答案。

2. Hierarchical Solution Refinement (HSR):从“民主投票”到“层级精炼”

除了隐式知识增强,Eigen-1还革新了多智能体的协作模式。

传统的多智能体系统采用“民主投票”机制,所有候选方案被平等对待,容易“稀释”最优解。

而Eigen-1引入的分层解决方案精炼(HSR)打破了这种假设。HSR采用“锚点—修复”结构:一个候选作为 anchor,其余作为参考依次修正,形成层次化协作。

在HSR框架下,每个候选解决方案轮流充当“锚点”,其他方案则作为“参考”提供针对性修正。这种设计让强方案能够吸收弱方案的有价值见解,而不是简单地进行平均。

具体包括四种修复维度:逻辑补全(填补缺失的推理步骤)、数值修正(纠正计算错误)、方法替换(用更优策略替代较弱方法)、表达优化(提升清晰度而不改变实质)。

这种设计让优质方案能吸收其他方案的有价值见解,而非简单平均。

下图通过一个图像识别任务生动展示了HSR的工作原理。

面对昆虫识别和花朵计数的复合任务,锚点解决方案最初选择了ResNet(选项C),但存在部署时间计算错误。通过引入其他解决方案作为参考,系统进行了四类针对性修正。

3. Quality-Aware Iterative Reasoning (QAIR):质量驱动的迭代优化

质量感知迭代推理(QAIR)能根据解答质量自适应地调整迭代深度:高质量解答可提前收敛,低质量解答则触发更多探索,从而在效率与准确率之间取得平衡。

该机制为每个方案评估三个维度:逻辑性、答案正确性、解释完整性。只有未达标的方案才会进入下一轮修正,避免在低质量候选上浪费计算资源。

全面碾压:不止于HLE

Eigen-1的优势不限于HLE:

1、HLE Bio/Chem Gold(149题)

Pass@1: 48.30%(领先SciMaster 13.4个百分点)Pass@5: 61.74%(首破60%)

2、SuperGPQA生物学(Hard版)

Pass@1: 69.57%Pass@5: 78.26%

3、TRQA文献理解

Pass@1: 54.65%Pass@5: 79.07%深层洞察:成功背后的规律错误模式分析

Figure 7的饼图揭示了一个关键洞察:92.78%的错误涉及推理过程问题,88.66%涉及知识应用问题,且两者存在大量重叠。

这表明科学推理的核心挑战不在于单纯的知识检索或逻辑推理,而在于如何将知识与推理无缝整合。

相比之下,执行遵循错误(13.40%)和理解错误(9.28%)占比较小,说明模型在指令理解和执行层面已经相对成熟。

组件贡献的精确量化

团队通过增量构建和消融实验精确量化了每个组件的贡献。

基线系统在没有任何外部知识的情况下只能达到25.3%的准确率,消耗483.6K tokens。加入显式RAG后,准确率提升到41.4%,但代价是工作流步骤从43.4激增到94.8,这正是“工具税”的直观体现。

当引入Monitor组件后,虽然准确率略降至34.5%,但token消耗骤降至218.4K,工作流步骤也降至51.3。

随着Querier和Injector的加入,准确率恢复到40.3%。HSR的引入将准确率提升至43.7%,最后QAIR将完整系统的准确率推至48.3%,同时保持了高效的资源利用(218.9K tokens,53.4步骤)。

消融实验从另一个角度验证了各组件的必要性。移除Monitor导致token消耗激增至461.3K,工作流步骤增至95.3,显示了隐式增强的巨大价值。

移除HSR或QAIR分别导致准确率降至44.8%和43.7%,证明了层级精炼和质量感知迭代的重要作用。

多样性与共识的微妙平衡

作者通过散点图和回归分析揭示了一个违反直觉但极具启发性的发现。

在信息检索任务(339个样本)中,解决方案之间的一致性与准确率呈现较弱的正相关(斜率0.369),意味着不同的检索路径和视角能带来互补信息,多样性是有益的。

而在推理任务(392个样本)中,情况完全相反——一致性与准确率呈现强正相关(斜率0.851),表明当多个推理路径得出相同结论时,这个结论很可能是正确的。

因此,检索型任务应鼓励解法多样性与并行路线;纯推理型任务应倾向早期共识与收敛。

这一发现为未来智能体系统的任务自适应设计提供了重要指导。

工具税的精确量化

最后,作者通过对比准确率提升与token减少的关系,直观展示了隐式增强相对于显式RAG的巨大优势。

传统的基线 RAG方案虽然能提升准确率,但以巨大的计算开销为代价,在图中表现为向右上方延伸(准确率提升但token增加)。

而Eigen-1则位于左上象限,在大幅提升准确率的同时减少了53.5%的token消耗,工作流迭代次数也从94.8步降至53.4步,减少了43.7%。这种“既要又要”的成果,正是架构创新的价值所在。

意义:科学AI的新范式

Eigen-1首次突破60分的意义远超一个基准测试:Eigen-1更预示着AI辅助科学研究的新范式。

当AI能够真正理解和推理人类知识前沿的复杂问题时,它将成为科学家的强大助手,加速从基础研究到应用转化的全过程。

研究团队表示,未来将继续优化架构设计,探索向其他科学领域的扩展,并研究如何将这些技术整合到更广泛的科学工作流中。随着更多研究者加入这一开源生态,我们有理由期待科学AI将迎来更快速的发展。

正如团队所言:“HLE可能是我们需要对模型进行的一次重要的考试,但它远非AI的最后一个基准。”当开源社区携手推进,人类与AI协作探索未知的新时代正在加速到来。

论文链接:https://arxiv.org/pdf/2509.21193v1

项目地址:https://github.com/tangxiangru/Eigen-1

— 完 —

量子位 QbitAI

关注我们,第一时间获知前沿科技动态

0
点赞
赏礼
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与本站无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者 部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 凡本网注明 “来源:XXX(非本站)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。 如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。 QQ:617470285 邮箱:617470285@qq.com
相关文章
三菱退出中国?官方回应:将与现有伙伴继续合作
6月23日,有媒体报道称,三菱汽车将逐步取消包括欧洲、中国在内的市场业..
2026款三菱帕杰罗曝光,第二代超选四驱+2.4T/2.0T双动力..
硬派越野圈的“老将”居然换小排量了?2026款三菱帕杰罗刚露出消息,就把..
恩智浦计划退出5G功率放大器业务;三星或将退出SATA SSD市场;三菱化学出售..
五分钟了解产业大事每日头条芯闻 恩智浦计划退出5G功率放大器业务我国首..
实拍三菱全新欧蓝德!搭1.5T四缸,内饰配大屏,不比奇骏香?..
在重庆车展上,全新一代三菱欧蓝德终于在国内亮相了,相比其国外的发布时..
试驾广汽三菱奕歌:小巧灵动
■ 阅车试驾车型:广汽三菱奕歌长/宽/高(mm):4405/1805/1685轴距(mm..
新车 | 四驱越野MPV/配侧滑门/2.2T柴油机,新款三菱Delica D:5亮相..
文:懂车帝原创 高帅鹏[懂车帝原创 产品] 日前,2025东京车展开幕,新款..
三菱集团的传奇发家史
“三菱”两个字,在日本就像一把瑞士军刀:银行、飞机、汽车、火箭、寿司..
2026款三菱Montero曝光,S-AWC四驱+差速锁全配,普拉多见了..
当 “普拉多见了都得慌” 的话题在越野圈炸锅,2026 款三菱 Montero 的曝..
日韩巨擘数据,三星2.1万亿三菱21万亿,中国第一谁?..
图片来源于网络2025年,让人火大的资本较量又来一波。韩国三星手里握着2...
关于作者
赶海的老阿姨..(普通会员)
文章
1745
关注
0
粉丝
0
点击领取今天的签到奖励!
签到排行

成员 网址收录40418 企业收录2986 印章生成263572 电子证书1157 电子名片68 自媒体91237

@2022 All Rights Reserved 浙ICP备19035174号-7
0
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索