国庆长假在即,Deepseek又放大招了!
9月29日,DeepSeek-V3.2-Exp模型正式在Hugging Face平台发布并开源。
该版本作为迈向下一代架构的重要中间步骤,在 V3.1-Terminus的基础上引入了团队自研的DeepSeek Sparse Attention (DSA)稀疏注意力机制,旨在对长文本的训练和推理效率进行探索性优化与验证,这种架构能够降低计算资源消耗并提升模型推理效率。
目前,华为云已完成对 DeepSeek-V3.2-Exp模型的适配工作,最大可支持160K长序列上下文长度。

为了确保评估的严谨性,DeepSeek-V3.2-Exp 的训练设置与前代 V3.1-Terminus 进行了严格对齐。测试结果显示,该模型在各大公开评测集上的表现与 V3.1-Terminus 基本持平,有效性得到了初步验证。

DeepSeek 现已将 DeepSeek-V3.2-Exp 模型在 Huggingface 和 ModelScope 平台上全面开源,相关论文也已同步公开。
作为一款实验性版本,DeepSeek 认识到模型仍需在更广泛的用户真实场景中进行大规模测试。为便于开发者进行效果对比,DeepSeek 为 V3.1-Terminus 版本临时保留了 API 访问接口,且调用价格与 V3.2-Exp 保持一致。该对比接口将保留至北京时间 2025 年 10 月 15 日 23:59。
此外,为支持社区研究,DeepSeek 还开源了新模型研究中设计和实现的 GPU 算子,包括 TileLang 和 CUDA两种版本。团队建议社区在进行研究性实验时,优先使用基于 TileLang 的版本,以便于调试和快速迭代。
⭐星标华尔街见闻,好内容不错过⭐本文不构成个人投资建议,不代表观点,市场有风险,投资需谨慎,请独立判断和决策。
相关文章









猜你喜欢
成员 网址收录40418 企业收录2986 印章生成263572 电子证书1157 电子名片68 自媒体91237